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We study diffusion on a substrate with permanent traps distributed with critical positional
correlation, modeled by their placement on the perimeters of a critical percolation cluster. We
perform a numerical analysis of the vibrational density of states and the largest eigenvalue of the
equivalent scalar elasticity problem using the method of Arnoldi and Saad [Y. Saad, Linear Algebra
Appl. 34, 269 (1980)]. We show that the critical trap correlation increases the exponent appearing in
the stretched exponential behavior of the low frequency density of states by approximately a factor
of two as compared to the case of no correlations. A finite-size scaling hypothesis of the largest
eigenvalue is proposed and its relation to the density of states is given. The numerical analysis of
this scaling postulate leads to the estimation of the stretch exponent in good agreement with the

result for the density of states.

PACS number(s): 05.40.+j, 05.50.4-q, 64.60.Fr

I. INTRODUCTION

Understanding the behavior of a particle diffusing in
the presence of traps is important, as it captures the
essence of many physical processes, including diffusion
controlled reactions where one of the reactants is immo-
bile, trapping of excitons, etc. Mapping of the diffusion
problem with traps to the scalar elasticity problem also
affords insight into lattice vibration of systems such as
binary alloys with contrasting elastic constants. From a
theoretical point of view, this problem is analogous to
the ideal chain in inhomogeneous media. The ideal chain
problem is interesting, since it is the Gaussian limit of
the self-avoiding walks and yet possesses a universality
class of its own in inhomogeneous media, that is distinct
from the usual random walk.

These considerations have resulted in many analyti-
cal and numerical attempts to gain an understanding of
the problem [1,2]. Typical quantities used to character-
ize diffusion in the presence of traps include Py(t), the
probability that the diffusing particle will return to the
starting point after time t. Py(t) is related to the num-
ber of distinct sites visited by the diffusing particle and is
the Laplace transform of the vibrational density of states
of the corresponding scalar elasticity problem, which can
often be measured experimentally by methods such as
Raman and neutron scattering [3].

For the case of diffusion in the presence of traps
distributed randomly with no correlations, it has been
proven rigorously by Donsker and Varadhan [4] that the
decay of Py(t) with time is slower than exponential. Es-
sentially the same behavior also results when the traps
have only short-range correlations such as the hard core
repulsion [1]. This fact indicates that, in the long time
limit, the properties of the diffusing particle are domi-
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nated by the presence of large trap-free regions that have
a finite (though small) probability of occurrence. This
is because if the traps were uniformly distributed, the
diffusing particle would be trapped at a constant rate,
which would result in an exponential decay of Py(t). It
also means that the quenched disorder average must be
carried out, since an annealed averaging would smear out
the trap positions.

In this paper we ask the question of whether and how
this interesting behavior of the diffusing particle with
traps is modified when we introduce long-range, criti-
cal correlations into their positions, with their associated
critical fluctuations [5]. In the equivalent scalar elastic-
ity problem, the correlated traps map to the clamping
of sites with a correlated distribution. In this sense, the
present problem extends the so-called fractino problem
[7] where a fractal boundary of an otherwise nonfractal
object is clamped to the case where the bulk of the sub-
strate is itself a fractal. It is also an extension of the
fracton problem [6] as the traps (or clamped boundaries)
are introduced into the scalar elasticity of fractals.

Calculational difficulties have prevented this problem
from receiving its share of attention even though, often
in real physical situations, the positions of traps are cor-
related at least within limited length scales. For the
case of uncorrelated trap distribution, a Poisson distribu-
tion is usually assumed, which simplifies the theoretical
calculation [8]; however, this assumption fails for cor-
related traps. As for computational calculations, tech-
niques based on exact enumeration are highly computer
time and memory intensive because of the high sensitiv-
ity of the behavior of the diffusing particle to the actual
positions of the traps in the sample, leading to large fluc-
tuations in the measured quantity from sample to sam-
ple. This translates to requiring an ensemble average to
be taken over a large number of disorder configurations
for meaningful results. Moreover, the onset of the asymp-
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totic regime is very slow in this type of problem, which
adds to the computational difficulties [9].

In this paper, we establish that Py(t) has a stretched
exponential form qualitatively similar to the case of the
Poissonian trap distribution but with a substantially dif-
ferent stretch exponent. We show this behavior from the
analysis of the density of eigenvalues of the transition
probability matrix W, which describes the diffusion pro-
cess. We also study the finite-size scaling of the largest
eigenvalue of W, which serves as an extremely powerful
tool with which to extract the stretch exponent charac-
terizing the long time behavior of Py(t). A preliminary
account of this work was presented at the Hayashibara
Forum (1995) and appears in its proceedings. [10]

II. IDEAL CHAIN IN CRITICALLY
CORRELATED DISORDER

We choose percolation cluster [11] formed at critical
probability of occupation p. as the substrate for diffusion.
The sites on the external perimeter (hull) [12] as well as
on the internal perimeter of the percolation cluster are
made absorbing and once the diffusing particle reaches
the perimeter sites it is trapped permanently. The hull
sites and the sites constituting the internal perimeter
form fractals at p. [13]. Thus, placing the traps along the
perimeters induces spatial correlations among the traps
because of the long-range correlations among the sites of
a fractal. While we do not pursue the distinction of ex-
ternal versus internal perimeters in this work, there are
interesting effects when different boundary conditions are
applied to them, at least in two dimensions [14].

The time evolution of the probability P;(¢) that the
diffusing particle is at site ¢ at time ¢ is Markovian and
the process can be described in the continuous time limit
by the following master equation:

(0/0t)Py(t) = Z’wijpj(t) — Pi(t), 1)

where w;; is the hopping rate from site j to 7. In this
problem we consider only nearest neighbor hopping and
so w;; is nonzero only for the nearest neighbor pairs 2, j.
We have chosen w;; to be 1/z for all occupied nearest
neighbors j, where z is the full coordination number of
the underlying lattice; otherwise w;; is set equal to zero.
What this amounts to is that once the particle hops to a
trap site there is no further time evolution of that par-
ticular random walk and only those walks that have es-
caped getting trapped in the perimeter sites evolve fur-
ther. Thus the traps act as permanent particle absorbers.

Processes in which time evolution is governed by Eq.
(1) can be cast into an eigenvalue problem of the tran-
sition probability matrix W. The matrix elements w;;
of W control the dynamics of the random walk, and
the locations of the nonzero elements of W have the in-
formation about the structure of the underlying fractal
substrate responsible for the correlations among the trap
sites on its perimeters.

The density of normal modes of W is related to the

return to the starting point probability of the diffusing
particle by the Laplace transform [15]. The probability
distribution of the number of walks Cy(t) that return to
their starting point after time ¢, denoted as P(Co(t);t),
was studied in [16] and found to be a truncated log-
normal distribution. Thus

P(Co(t);t) =

1 e [ 0 Colt) ~ Ae)?
Co(t)\/2mo? P 207 ’
(2)

In [16] it was further found from the first moment of this
distribution that

In Py (t) ~ —t2(17x0) (3)

in the asymptotic long time limit, where Py (t) is obtained
as Co(t)/z¢, the bar above the quantity indicating the
quenched disorder average. The exponent o is the same
one as that which appears in the long time behavior of
the width of the log-normal distribution, o2,

ol ~ pt2xe, (4)

Since Py(t) has a stretched exponential behavior ac-
cording to Eq. (3), we expect the density of normal modes
p [which is the inverse Laplace transform of Py(t)] to also
have a stretched exponential form [16],

Inp(e) ~ —e~%/? (5)
in the limit of small ¢ = |IlnA|, where A denotes the
eigenvalues of W, and the exponents xo and dg are re-
lated to each other by do = 4(1 — x0)/(2x0 — 1). The
results from [16] give support for the presence of such a
behavior, although their numerical estimates of do need
to be improved as they did not take into account the
proper normalization of p as well as the substantial non-
asymptotic effects [17].

We can also relate the behavior of p(e) to the finite
size effects of the edge of the spectrum. First, note that
for any finite substrate, however large, the largest eigen-
value of W, which we denote by A;, must be less than
one. This is because the eigenvalue of one would indicate
the existence of a stationary state, whereas there are al-
ways particles that are trapped, leading to a leakage of
probability for the diffusing particle, in contrast to the
diffusion without traps. The value of |[In A;|~! then cor-
responds to the slowest time scale of the problem, and
there is always a gap between \; and one, the latter be-
ing what the maximum eigenvalue would be for diffusion
without traps. The interesting question is whether this
gap is bounded from below by a nonzero constant or it
approaches zero as the substrate size increases.

Our argument for the behavior A; — 1 as the substrate
size § — oo follows the observation of [4] for the case of
uncorrelated trap distribution. In that case, the return
probability Py(t) was shown to be a stretched exponen-
tial, which is slower than a pure exponential (although
not as slow as a power law, which would be the case in the
absence of traps), and this behavior was attributed to the
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dominance of the trap-free regions, although they occur
relatively infrequently. In our case of critically correlated
trap distribution, we also have a slow, stretched expo-
nential for Py(t), which we interpret as a similar domi-
nance of the nearly trap-free regions. Although there are
more traps in the critically correlated case, there are also
much greater fluctuations in their density. Thus, regions
of relatively low concentrations of the traps are likely to
be present, probably with a hierachical size distribution.
Since the leakage of probability is nearly zero in a nearly
trap-free region, we would expect A; to approach one as
the size of the largest trap-free region grows indefinitely.

Another argument is as follows: if there were indeed
a nonzero lower bound for ¢; = |IlnA;|, then it would
also give a bound for the slowest relaxation rate. Thus,
Py (t) would have to decay at least exponentially in time
corresponding to this rate. Since Py(t) in fact decays as a
stretched exponential with the stretch exponent less than
one ( [16] as well as this work), no such bound can exist
for the rate; rather €; — 0 as § — oo.

We further propose a scaling relation between €; and
S via

1/ ~ / " p(e)d(e), (6)

where a possible numerical prefactor has been neglected.
This relation follows from the assumption that, say, the
largest (A1) and second largest (A;) eigenvalues scale rel-
ative to the value one in the same way when S — oo.
That is, if we assume

/0 " p(e)d(e) ~ CL(S), (1)
/0 “ p(e)d(e) ~ Caf(S), (8)

where €; = |In Az, then the difference must also scale in
the same way,

/ “ p(e)d(e) ~ (Ca — C1F(S), (9)

€1

but this latter integral must scale as 1/S if the integral of
the density of normal modes p(€) is normalized to unity.
This means f(S) ~ 1/S, thus Eq. (6) follows.

The assumption of the same asymptotic behavior for
the two largest eigenvalues is plausible if we consider the
difference between A; (or A2) and one to be the reflection
of the finite size of the largest (or the second largest)
trap-free region (respectively). As long as the large trap-
free regions are geometrically similar (as would be the
case in a hierarchical distribution of such regions), and
as long as their sizes all go to infinity as S — oo, it seems
reasonable that the gaps between A; (¢ = 1,2) and one
behave in the same manner.

If we substitute a stretched exponential form of p(e)
in Eq. (6) we get an incomplete gamma function. On
retaining only the leading term of the incomplete gamma
function and taking the natural logarithm of both sides,
we get
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InS=ae;"—(z+1)Ine; + 0, (10)
where a general stretched exponential form of p(e),
—Inp(e) ~ae™® +c, (11)

has been assumed and b = ¢ + In(az).

While the above gives a particular scaling prediction
for the case of the critically correlated trap distribution,
the argument leading to Eq. (6) applies more generally.
For example, a similar procedure should apply to the un-
correlated trap distribution of [4]. Also, for the trapless
case (or the ants case [15]), where the largest eigenvalue
is actually one (because there is a stationary state), a
similar argument should work with, say, the second (A2)
and third (As) largest eigenvalues. Of course, if there
is no trap, a probability leakage per se does not occur.
However, each mode with a large A tends to be associated
with a blob of high connectivity region to which the same
kind of argument can be applied. Indeed, in the trap-
less case, Eq. (6), together with the power law density of
states

p(e) ~ eds/2_1, (12)

where d; is the spectral dimension of the substrate, leads
to a power law relation between S and e,

€g ~ ST/, (13)

which is identical to the relation proposed on the basis
of the finite-size scaling of the largest nontrivial normal
mode and numerically verified in [15]. Such finite-size
scaling relations provide a very powerful technique with
which to obtain the quantitative characterization of the
density of states, since they reduce the computational
effort drastically, requiring only the information on the
highest (or second highest) mode.

III. RESULTS OF NORMAL MODE ANALYSIS

In this section we give numerical results for the expo-
nent z for the stretched exponential decay of the density
of states as discussed above. We extract this exponent
directly from the density of states [cf. Eq. (11)] and also
independently from the finite-size scaling of the largest
eigenvalue of W [cf. Eq. (10)] in two and three dimen-
sions (square and simple cubic lattice, respectively).

In order to reduce the computational time and memory
requirements, we take advantage of the fact that we are
interested only in the asymptotic long time relaxation of
the system controlled by those normal modes with large
eigenvalues A. Thus we use the Arnoldi-Saad algorithm
[18,15] to reduce the original W to a smaller matrix that
contains the approximate information about the highest
normal modes.

We analyze the density of states per site, p(e). It is
obtained from the eigenvalues of W by binning them lin-
early in the € space. The number of eigenvalues in each
bin is divided by the bin width, the size of the cluster and
also by the number of clusters over which the quenched
disorder average is performed. The number of indepen-
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FIG. 1. Natural log of the density of eigenvalues p(e)
against € in d = 2 and d = 3. The data collapse very well
for different sizes of substrates.

dent cluster realizations over which the disorder average
was taken is of the order 1000 for cluster sizes S = 8000,
10000, and 50000 and of the order 10000 for S = 5000.
To avoid partial binning, we retained in the final results
only those bins that contained eigenvalues contributed
from every substrate realization.

Since p(€) has a stretched exponential decay, we have
plotted in Fig. 1, —Inp(e) versus ¢, which is expected
to have the form ae™® + c¢. There is an excellent data
collapse for all the cluster sizes both in two and three
dimensions. The solid curve drawn through the data is
obtained by fitting the data to an expression of this form.
The numerical estimates of z and the numerical values
of a and ¢ corresponding to the central values of x are
tabulated in Table I. Note that the value of z cannot be
accurately obtained simply from the slope of the double
log plot of In p(€) with respect to €, since the value of the
constant ¢ might be appreciable.

The sizes of the symbols in Fig. 1 are larger than the
cluster to cluster statistical fluctuations. The quoted er-
ror bars are obtained visually from changing the effective
estimate of = for the nonlinear fit until it no longer fits the
data points. The small scaling regime, which is typical
for these kinds of problems (i.e., diffusion with traps) [9],
makes the precise extraction of  difficult. This accounts

TABLE I. Estimates of the exponent = and the constants
a and c from p(e) for the square lattice in two dimensions
and simple cubic lattice in three dimensions. The data for
—In p(€) have been fitted to the form ae™ + c.
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FIG. 2. Natural log of the size of substrate In S against €;
ind=2andd=3.

for the large error bars in our results as compared to the
case, of diffusion in a percolation cluster without absorb-
ing sites [15]. In the latter case, the density of states has
a power law form and the scaling regime increases appre-
ciably with the size of the cluster, which results in much
smaller error bars for the extracted exponents even with
the same numerical technique.

In Fig. 2, we plot In.S with respect to €¢; in two and
three dimensions, where S is the size of the substrate.
The solid curves are obtained by fitting the data to an
expression ae; "% — (z + 1)lne; + b, which is what we
expect from the finite-size scaling analysis of the largest
eigenvalue. The sizes of the symbols are larger than the
cluster to cluster fluctuations. The number of clusters
over which the disorder average was performed is of the
order 1000 for the larger clusters, the same as for the
density of states, and for smaller clusters of size 100,
400, 1000, and 5000 the average was taken over 10000
clusters. The estimates of z and the values of a and b
corresponding to the central values of z, which we obtain
from the nonlinear fit, are tabulated in Table II. The
error bar for the value of z is obtained in a similar way
to that for the density of states.

We note that the estimates of = and a obtained from
the density of states and from the finite-size scaling of the

TABLE II. Estimates of the exponent z and the constants
a and b = In(az) + ¢ from the finite size scaling of €;, for
the square lattice in two dimensions and simple cubic lattice
in three dimensions. The data have been fitted to the form
ae”® —(z+1)Ilne+b.

d T a c d z a b
2 2405 0.084 0.42 2 2.237073 0.072 ~1.06
3 3.24703 0.64 -0.077 3 3.2679% 0.5 0.72
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largest eigenvalue, given in Tables I and II, respectively,
are in good agreement with each other. The values of dy
thus obtained, however, turn out to be about a factor of
two larger than the corresponding stretch exponents for
the uncorrelated distribution of traps [4]. The estimates
of z also differ from those of do/2 as given by [16] due, we
believe, primarily to the failure of [16] to take properly
into account € being not quite in the asymptotic region
(thus proper normalization and prefactors becoming im-
portant) (cf. [17]). However, the exponent xo [Eq. (4)]
is relatively insensitive to z (= dp/2) and the analysis of
Poy(t) in [16] is not affected by these problems. We also
believe that their main conclusions remain valid.

IV. SUMMARY

In summary, we have studied the problem of diffusion
on a substrate with permanent traps that are distributed
with critical correlation in their positions. The critical
correlation has been modeled by placing the traps on
the perimeters of critical percolation clusters, which are
obtained by Monte Carlo simulation. The statistical be-
havior of the diffusing particle in the time domain is then
mapped to the scalar elasticity problem with fixed, frac-
tal boundaries, and a numerical analysis of the vibra-
tional density of states of the latter problem is carried
out using an approximate diagonalization algorithm of
Arnoldi and Saad [18]. This problem may be considered
a generalization both of the fracton problem of Alexan-
der and Orbach [6], where there are no traps but the
substrate is fractal, and of the fractino problem of Sapo-
val, Gobron, and Margolina [7], where a fractal boundary
is clamped (equivalent to traps) but the substrate itself
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is not fractal.

We have shown that introducing critical spatial cor-
relations among the traps does not change the qualita-
tive behavior of the density of states as compared to the
case of uncorrelated traps, but that there are substantial
effects of correlations quantitatively. This strongly sug-
gests that the diffusion process is dictated by the pres-
ence of nearly trapless regions similarly to the case of un-
correlated traps, but the long-range correlations among
the trap positions lead to a decrease in the number and
size of these regions nearly free of traps, which induces a
faster decay in the density of states and consequently a
smaller probability of return to the starting point after
time ¢. This is reflected in a much larger exponent in the
stretched exponential form of density of states than the
case of uncorrelated traps.

On the other hand, as compared to the case of the same
fractal substrate but with no traps, the density of states is
qualitatively different, since the latter problem produces
a power law density of states in the low energy limit
known as fractons, accumulating to an infinite density
toward the maximum eigenvalue of one [15]. In contrast,
with the perimeters acting as traps, the density of states
becomes a stretched exponential, rapidly falling to zero
toward the maximum eigenvalue.
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